
 

 
 

An Update from the ICPC, Written by 

Marine Environmental Adviser, Dr Mike Clare 

Submarine Cable Protection 

and the Environment 

A Publication from the International 

Cable Protection Committee  

(ICPC) 

 

April 2024 ~ Issue #8 

Using cables to monitor the ocean 



 

2  A PUBLICATION FROM THE INTERNATIONAL CABLE PROTECTION COMMITTEE (ICPC) 

SUBMARINE CABLE PROTECTION AND THE ENVIRONMENT   ●   APRIL 2024 

 

 

  

 

SUBMARINE CABLE PROTECTION AND THE ENVIRONMENT 

An Update from the ICPC, Written by the Marine  

Environmental Adviser (MEA) 

 

PUBLISHER 

The International Cable Protection Committee (ICPC) 

 

AUTHOR 

Dr Mike Clare 

ICPC Marine Environmental Adviser   

Also, Principal Researcher – Ocean BioGeoScience  

at the National Oceanography Centre, UK 

 

EDITOR 

Mr Ryan Wopschall 

ICPC General Manager 

 

DESIGN & LAYOUT 

Ms Christine Schinella 

ICPC Secretariat 

 

CONTACT 

12 Fratton Road, Portsmouth, PO1 5BX UK 

Website: www.iscpc.org 

Secretariat: secretariat@iscpc.org 

LinkedIn 

 

Fibre-Sensing: More 

than Just a Cable 

Protection Tool? 

 
 

5 

About the ICPC  

& Editorial Staff 31 
Acknowledgement  

& References 33 

Editor’s Corner 
 3 

Different Types of 

Sensing that Relies 

Upon Submarine 

Cables 

 

8 
Introduction to Fibre-

Optic Sensing 

Technologies 

• Distributed Acoustic Sensing  

• Distributed Temperature Sensing  

• Optical Interferometry 

• State of Polarisation 

• Example Applications in Ocean & 

Earth Monitoring 

• Monitoring of Human Activities 

• Earthquakes and Seismic Events  

• Tsunami and Surface Waves  

• Other Natural Hazards Including 

Volcanic Hazards 

• Oceanographic Processes Including 

Storms, Currents and Temperature 

Fluctuations 

• Biological activity – Whales & Dolphins  

• Polar and Glacial Processes 

• What does the future have in store?  

11 

mailto:michael.clare@noc.ac.uk
mailto:ryan.wopschall@iscpc.org
mailto:mailto:christine.schinella@iscpc.org
https://iscpc.org/
mailto:secretariat@iscpc.org
https://www.linkedin.com/company/icpc-ltd/
https://www.linkedin.com/company/icpc-ltd/


 

3  A PUBLICATION FROM THE INTERNATIONAL CABLE PROTECTION COMMITTEE (ICPC) 

SUBMARINE CABLE PROTECTION AND THE ENVIRONMENT   ●   APRIL 2024 

If you have been around the 

submarine cable industry for the 

last ten or so years, you have 

undoubtedly heard of SMART 

(Scientific Monitoring and Reliable 

Telecommunications) cables. If you 

have been around the industry for 

the last five or so years, you have 

undoubtedly heard of DAS 

(Distributed Acoustic Sensing). And 

if you have been around the 

industry for the last two or three 

years and have attended industry 

conferences, you have 

undoubtedly listened to a 

presentation or panel discussion on 

cable sensing. But what does it all 

mean? 

Seafloor observatories that 

involve sensors connected by 

cables have been used by 

academics for decades, to monitor 

seafloor biology, offshore 

earthquakes, and for tsunami 

detection. The use of sensing along 

the fibre-optics within cables 

themselves has only started to see 

application offshore in recent 

years, but has been used in the oil 

and gas industry for years. But the 

entrance of using cable sensing 

technology on commercial 

submarine fibre optic cable systems is 

a relatively new marriage of two 

existing technologies that has seen 

technological improvement on  

both fronts.   

From an industry perspective, 

cable sensing has the potential to 

be used as a cable protection tool. 

The method that appears to be 

advancing the most in this regard is 

sensing methods where the fibre in 

the cable is used as the detection 

tool to discern statistically 

categorised frequencies of 

acoustic noise or other vibration 

sources. Fibre sensing can be used 

to detect a whale, a vessel, an 

earthquake, among many others 

and requires no alteration to the 

cable or fibre itself. This method 

can be applied through the lens of 

cable protection, but it also has 

many applications for collecting 

environmental data as well.   

The second avenue for sensing is 

using separate sensor bodies 

incorporated into a cable system to 

collect data. SMART cables is are 

EDITOR’S CORNER 
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one such methodology that uses  

external sensors incorporated into the 

repeaters of a submarine fibre optic 

cable system to collect 

environmental data in the ocean. 

While this method is more geared 

towards environmental data 

collection, it has potential 

applications for cable protection 

as well. 

There is a real opportunity to 

expand the use of submarine fibre 

optic cables in other dual uses such 

as sensing, which can provide 

another tool for cable protection 

but also add to our understanding 

of the environment and the 

oceans. These are exciting times 

and if the trajectory remains, it is 

quite feasible that most modern 

cable systems developed today 

will incorporate some form of 

sensing as a secondary use of the 

cable. But as with any 

development, there are challenges 

with this emerging field. Data 

collection, storage, even permitting 

or regulatory hurdles are some of 

the challenges that lie ahead. But 

the development of these 

technologies and the need to 

overcome these challenges means 

there is a continued opportunity for 

collaboration between the 

submarine cable industry, 

innovations in engineering, and 

physics and ocean scientific 

researchers.  

Cable sensing has strong 

potential to be used as an early 

warning system for natural hazards, 

to monitor the ocean’s response to 

climate change, as well as to 

better understand the threads to 

cables in the ocean. This issue of 

Submarine Cable Protection and 

the Environment looks to explore 

these opportunities.  

Sincerely, 

Ryan Wopschall 

ICPC General Manager  

 

mailto:ryan.wopschall@iscpc.org
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A global network of more than 

1.6 million kilometres of underwater 

cables crosses the oceans. This 

network of cables, that are 

typically no wider than a garden 

hose, transfers critical 

telecommunications between 

continents, connects remote 

islands, and carries more than 99% 

of all digital data traffic worldwide. 

This traffic includes the internet and 

trillions of dollars in financial 

transactions every day. Our 

demand for digital 

communications, and our reliance 

on this network, continue to grow 

every year, requiring new and 

higher capacity cable systems to 

provide these critical global links. 

Advances in fibre-optics (the glass 

fibres at the core of modern 

telecommunications cables) and 

the technology to transfer data 

along them, are enabling greater 

volumes of data to be carried than 

ever before, to stay ahead of 

demand. In addition to the benefits 

provided by increased capacity, 

these technological developments 

have led to some unexpected 

discoveries. Environmental 

disturbances, even at a very small 

scale, can cause changes in the 

passage of the light along optical 

fibres, that are becoming 

increasingly used to monitor the 

health status of submarine cables 

in real time, providing a new 

method of cable protection. For 

example, fibre-optic sensing has 

been used to detect temperature 

variations that may indicate 

overheating of power cables, to 

assess where a cable is being 

moved around by the effects of 

seafloor currents that can lead to 

progressive damage as a result of 

abrasion, to detect the locations of 

bottom contact fishing close to a 

cable that could lead to damage, 

and to determine the locations of 

cable faults far from shore so that 

repairs can be more effectively 

targeted.  

FIBRE-SENSING:  

MORE THAN JUST A CABLE 

PROTECTION TOOL?   
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It is becoming more and more 

apparent that fibre-optic sensing 

may yield other valuable 

information, in addition to its primary 

purpose for cable protection. A 

growing number of studies are 

starting to show the broader utility of 

fibre-optic sensing to make scientific 

measurements in the marine 

environment. Fibre-optic sensing can 

be used to detect natural hazards 

such as earthquakes and tsunamis, 

to gather data that has potential 

value for ocean and climate 

monitoring, and even to detect 

sounds made by animals that live in 

the deep sea. The potential to 

observe environmental conditions in 

 

the ocean using fibre-optic sensing 

along unmodified 

telecommunications cables is 

particularly exciting for scientists 

given the global reach of the 

submarine cable network and the 

limited monitoring that currently 

exists in the deep ocean, despite it 

being the largest habitable space 

on our planet and one that is under 

growing threat from the impacts of 

climate change.  

This issue of Submarine Cable 

Protection and the Environment 

provides an overview of the 

different techniques that have 

been developed in the field of 
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fibre-optic sensing and how they 

are increasingly being used to 

monitor the marine environment 

around them. This overview 

explains how the different 

techniques work, what they can be 

used to observe, and provides 

examples of their application on 

both commercial cables as well as 

those used specifically for scientific 

purposes, to gain a better 

understanding of the ocean and 

our planet as a whole.  

Figure 1: Top graph illustrates 

the growth in scientific studies 

that use fibre-optic sensing to 

monitor the environment over 

recent years. Note the rapid 

growth in the application of this 

sensing technology since 2015. 

Lower panel shows the range of 

processes and human activities 

that have been detected by 

fibre-optic sensing along cables. 
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It is first important to point out 

that there are a number of uses of 

submarine cables in environmental 

monitoring, some of which have 

been in use for a significant time. 

These include:   

Cabled seafloor observatories 

are designed and developed 

specifically for ocean and other 

environmental monitoring and do 

not themselves carry commercial 

telecommunications traffic. These 

systems include arrays of seafloor 

observatories or nodes that host 

individual or many different types 

of scientific sensors by cables that 

are connected to the shore by 

cables that enable both power 

and data transmission. Examples 

include those offshore Canada 

(NEPTUNE - North East Pacific Time-

series Underwater Networked 

Experiments), USA (OOI - Ocean 

Observatories Initiative), Taiwan 

(MACHO - Marine Cable Hosted 

Observatory) and Europe (through 

ESONET-NoE - European Seas 

Observatory NETwork-Network of 

Excellence and recently with the 

infrastructure project EMSO - 

European Multidisciplinary Seafloor 

Observatory) (Favali et al., 2010). 

Some of the most sophisticated 

systems include those in Japan (S-

Net - Seafloor Observation Network 

for Earthquakes and Tsunamis 

along the Japan Trench and 

DONET - Dense Oceanfloor 

Network system for Earthquakes 

and Tsunamis) that are designed to 

monitor offshore earthquakes and 

provide a very dense grid of 

seafloor nodes that detect the 

passage of tsunami waves to 

provide the critical early warning to 

enable the most effective 

evacuation of vulnerable areas. 

The main driver for this dense 

monitoring network was due to the 

unexpectedly large impacts of the 

2011 Tohoku-oki earthquake, which 

was the most powerful earthquake 

ever recorded in Japan and the 

costliest natural hazard in history 

(economic costs estimated at least 

at $235 billion; Zhang, 2011).   

Scientific Monitoring and 

Reliable Telecommunications 

(SMART) cables, which in contrast 

to cable seafloor observatories, are 

DIFFERENT TYPES OF SENSING THAT RELIES UPON SUBMARINE CABLES 
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systems that involve the transfer of 

commercial telecommunications 

traffic at the same time as making 

scientific measurements. SMART 

cables integrate several scientific 

sensors within or adjacent to 

repeaters, which are devices used 

to boost the optical signal required 

for long distance trans-oceanic 

telecommunications. These sensors 

include temperature, pressure and 

acceleration which enable the 

measurement of key ocean 

variables at spacings of tens of 

kilometres to observe climate 

changes and to monitor tsunamis 

and earthquakes (Howe et al., 

2022). While the SMART approach 

permits telecommunications traffic 

at the same time as making 

scientific measurements, it requires 

a specialist cable design that must 

be specified at the manufacturing 

stage and cannot be retro-fitted to 

an existing submarine cable 

system.  

Fibre-optic sensing using 

standard telecommunications 

cables, which is the primary focus 

of this issue. Small changes in the 

light that travels along an optical 

fibre are interrogated to determine 

environmental changes, such as 

vibrations, pressure, and 

temperature changes. This family of 

cable-based sensing includes 

many approaches including: i) 

Distributed Acoustic Sensing (DAS); 

ii) Distributed Temperature Sensing 

(DTS); iii) Interferometry or Phase 

with HLLB (High Loss Loop Back); iv) 

State of Polarisation (SOP). A 

fundamental difference of these 

types of techniques for sensing is 

that they use the optical fibre 

within a cable itself to make 

measurements. This therefore does 

not require modification of 

standard commercial 

telecommunications cables to add 

environmental sensing capabilities 

and includes techniques that are 

routinely used in the monitoring of 

telecommunication performance, 

integrity and security, and that are 

compatible with data traffic, 

sometimes in the same fibre, with 

no degradation of the transmitted 

data stream (Marra et al., 2023).   

See tables 1 and 2 on the following 

page.  

 

DIFFERENT TYPES OF SENSING THAT RELIES UPON SUBMARINE CABLES 
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Technology 

 
Range 
[km] 

 
Spatial resolution 

 
Compatible with 

data traffic on 
other channels 

 

 
Monitoring 
application 

 
Environmental 

sensitivity 

 
Relative 
Capital 

Cost 
 

 
Optical 
interferometry 
 

 
1000s 

 
10-100 km1 

 
Yes 

 
Global 

 
High 

 

 
$$ 

 
State of 
Polarisation 
 

 
1000s 

 
10-100 km1 

 
Yes 

 
Global 

 
Medium 

 
$$ 

 
Distributed 
Acoustic 
Sensing 
 

 
<150 

 
Metre-scale 

 
Yes, if power 

reduced 

 
Coastal 

 
High 

 
$ 

 
SMART 
Cables 
 

 
1000s 

 
10-100 km2 

 
Yes2 

 
Global 

 
High 

 
$$$$$ 

 
Cabled 
scientific 
observatories 
 

 
1000s 

 
Variable, depending 

on the number of 
nodes/ 

observatories 
 

 
N/A – Uses 

bespoke cables 
for power and 
data transfer 

 
Local/ 

Regional 

 
High 

 
$$$$$$ 

 
Notes: 1) Environmental changes recorded are integrated over the length of a cable between repeaters. 2) 
Environmental changes are recorded at a point by individual sensor packages that are integrated within a bespoke 
SMART repeater unit and monitoring does not use the optical fibre itself. 
 

 

Table 1: Applications 

of the different cable 

sensing techniques 

covered in this issue 

and SMART Cables. 

 

Table 2: Comparison 

of different fibre-optic 

sensing techniques and 

SMART Cables. Notes, 

modified from Marra et 

al. (2023) and 

presentation by Dean 

Veverka at the ICPC 

2023 Plenary meeting. 
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Useful for cable 

protection 
 

 
Useful for scientific monitoring/observation  
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Interferometry 
 

 
N 

 
? 

 
? 

 
Y 

 
Y 

 
Y 

 
N 

 
N 

 
N 

 
? 

 
? 

 
Y 

 
N 

 
N 

 
State of 
Polarisation 
 

 
N 

 
? 

 
? 

 
Y 

 
Y 

 
Y 

 
N 

 
N 

 
N 

 
? 

 
? 

 
Y 

 
N 

 
N 

 
Distributed 
Acoustic 
Sensing 
 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
SMART 
Cables 
 

 
Y 

 
N 

 
N 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
N 

 
Y 

 
N 

 
Notes: 1) Earthquake-induced tsunamis are triggered by large vertical seafloor displacements, and most sensing 
modalities do not generally distinguish between horizontal and vertical axes (the exceptions being SMART cables 
and dedicated seafloor observatories).  
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Figure 2: Schematic illustrating the different types of sensing techniques that 

use cables. Blue colours refer to techniques that use the optical fibre and sense 

along the cable itself, including Distributed Acoustic Sensing, Interferometry and 

State of Polarisation. Also shown are techniques that rely upon cables, but that 

make point measurements at scientific nodes or sensors that are connected to 

cables (i.e. scientific observatories/networks in orange) or are integrated within a 

repeater (i.e. SMART Cables in grey) and hence require a bespoke design.   

INTRODUCTION TO FIBRE-OPTIC SENSING TECHNOLOGIES 

 

On the following pages, we provide an introduction to each of the 

available technologies, a general overview of how fibre-optic sensing 

technologies work, and  about their relative advantages and limitations.  

 

DIFFERENT TYPES OF SENSING THAT RELIES UPON SUBMARINE CABLES 
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DISTRIBUTED ACOUSTIC 
SENSING (DAS) 

• A light pulse is injected in the 

fibre and the reflected light 

(known as backscatter) is 

analysed using a method called 

Optical Time Domain 

Reflectometry.  

• Backscattering is generated as 

a result of tiny changes in the 

density of the glass core of the 

optical fibres arising from small 

imperfections created during its 

manufacture. Environmental 

changes, such as temperature 

or ground movements, can 

cause changes to that 

backscatter, creating shifts in 

the phase of the backscattered 

light. 

• As we know the time it takes for 

light to travel along and back 

through an optical fibre, this 

technique can be used to not 

only detect environmental 

changes from the backscatter 

response but also to locate 

where those changes occur 

along the cable to a precision 

of around 1 metre.  

• This approach is used routinely 

for cable protection and is the 

most mature of these fibre-optic 

sensing technologies, having 

initially been developed for use 

in the oil and gas industry.  

• Monitoring is typically performed 

on a so-called ‘dark fibre,’ 

which refers to a fibre that is not 

lit and does not carry data 

traffic. Modern 

telecommunications cables 

contain multiple fibres to 

provide the capacity needed 

for data transfer. It is now 

possible for Distributed Acoustic 

Sensing to be used on fibres 

carrying data traffic if the 

optical power is below a 

suitable threshold (i.e., avoiding 

gain imbalances in the optical 

repeaters); however, reducing 

the power will reduce the 

distance over which 

measurements can be made. 

• Distributed Acoustic Sensing is 

limited to the distance at which 

the backscatter signal is too 

weak (i.e., due to optical losses) 

and/or the distance to the first 

repeater, unless a cable is 

INTRODUCTION TO FIBRE-OPTIC SENSING TECHNOLOGIES 
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specifically designed with a 

fibre which does not pass 

through an amplifier within a 

repeater. This typically limits this 

technique’s application beyond 

~100-150 km from shore and will 

therefore typically be limited to 

coastal and shelf settings, 

except where continental 

shelves are narrow (e.g., active 

tectonic margins, volcanic 

islands etc.).    

• In order to make measurements, 

an external unit known as an 

interrogator is required that is 

typically located at a cable 

landing station. The interrogator 

is connected to a fibre and can 

be added to any existing 

telecommunications cable.   

• In addition to detecting 

different events or processes, 

Distributed Acoustic Sensing can 

can be used to image 

geological structures that lie 

beneath the seafloor. To do so 

requires a source of noise, which 

could like those used in typically 

offshore surveys (e.g., airgun or 

other controlled seismic source) 

or, as demonstrated by recent 

studies, it is possible to make use 

of ambient noises in the ocean, 

such as generated by 

earthquakes, weather events or 

even by whales (Lindsey and 

Martin, 2021).   

DISTRIBUTED TEMPERATURE 
SENSING (DTS) 

• Distributed Temperature Sensing 

is based on the understanding 

of how the intensity of light 

scattering within a fibre is 

affected by local changes in 

temperature, which cause slight 

changes to the fibre (Hartog et 

al., 2018).  

• Unlike other fibre-optic sensing 

approaches, which detect 

relative changes in 

temperature, Distributed 

Temperature Sensing can 

provide an absolute measure of 

the temperature of the core of 

the fibre at the point at which 

the scattering occurs. This 

provides opportunities to 

monitor health status, 

particularly for power cables, 

but also provide potentially 

useful scientific information 

INTRODUCTION TO FIBRE-OPTIC SENSING TECHNOLOGIES 
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about ocean bottom 

temperatures (e.g., to monitor 

the deep ocean’s response to 

warming).  

• This approach is now very well 

established, with many 

thousands of installations across 

applications ranging from fire 

detection in tunnels, through the 

dynamic thermal rating of 

energy cables, to the 

determination of the flow profile 

in hydrocarbon wells (Hartog, 

2018).  

• It is possible to use Distributed 

Temperature Sensing to 

measure over distances of tens 

of kilometres in length, at a 

spatial resolution of around 1 m, 

resolving temperature changes 

of less than 0.01oC.  

OPTICAL INTERFEROMETRY 

• Optical Interferometry requires 

an ultra-stable laser at one end 

of a cable. This laser source 

needs to be far more stable 

than that typically used in 

commercial systems but of a 

similar output power (~1 mW), 

and can be added to existing 

cable systems with no 

modification to underwater 

components of the system.  

• A laser signal is injected into an 

optical fibre within a cable and 

the returned signal is compared 

to the one that went in. If there 

is no external perturbation to the 

fibre, the return signal will match 

the initial signal; however, 

environmental disturbances 

create small changes in the 

path of the light along the fibre 

leading to a delay in the return 

time of the light (known as a 

phase change).  

• Phase changes can be related 

to disturbances caused by 

several processes, such as 

pressure variations induced by 

the passing of surface ocean 

waves or the effects of seafloor 

currents that cause the cable to 

move slightly.   

• Optical Interferometric 

measurements are made with 

no impact on data traffic on 

other channels and have been 

shown to reach over thousands 

of kilometres.  

INTRODUCTION TO FIBRE-OPTIC SENSING TECHNOLOGIES 
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• Initial trials demonstrated that 

ground shaking signals 

generated by earthquakes can 

be detected and characterised 

using this approach; however, 

those studies used the entire 

length of cable as a single 

integrated sensor (Marra et al., 

2018).  

• More recent advances have 

taken advantage of the Fibre 

Bragg Grating (FBG)-based 

High-Loss Loop Back (HLLB) 

circuit at each repeater, which 

is already used to provide a 

health check on the optical 

amplifiers. In addition to this 

update on cable health and 

using this same approach, it is 

now possible to localise phase 

changes to cable spans 

between individual repeaters; 

enabling span-wise detection of 

environmental signals (Marra et 

al., 2020).  

• Monitoring can therefore be 

achieved across the full length 

of a cable system (thousands of 

kilometres), with a spatial 

resolution that is equivalent to 

the distance between repeaters 

(i.e. on the order of tens of 

kilometres).  

STATE OF POLARISATION  

• Polarised light is used to transmit 

data through 

telecommunications cables 

because the use of orthogonal 

polarisations doubles the 

capacity of each optical fibre. 

To extract a 

telecommunications signal, the 

receiver at a cable landing 

station continuously monitors the 

state of polarisation.  

• It has been recognised that the 

state of the polarised light can 

also be affected by the 

surrounding environment, 

providing another tool to 

monitor cable health as well as 

detect natural processes in the 

ocean.  

• As in the case of Optical 

Interferometry, the earliest State 

of Polarisation studies made 

measurements along the full 

length of a cable system, 

demonstrating that this 

technique can be used over 

INTRODUCTION TO FIBRE-OPTIC SENSING TECHNOLOGIES 
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tens of thousands of kilometres 

(Zhan et al., 2021). 

• More recent developments 

have shown that the High-Loss 

Loop Back circuit can also be 

used to locate signals to cable 

spans between individual 

repeaters, thus providing a 

spatial resolution on the order of 

tens of kilometres (Mertz et al., 

2023).  

• This approach does not require 

an ultra-stable laser and uses 

standard coherent transceivers 

without any need for 

modification to hardware. 

 

EXAMPLE APPLICATIONS IN 
OCEAN AND EARTH 
MONITORING 

How have these different 

techniques been used to better 

understand marine environments? 

Of the 150 peer-reviewed studies 

that demonstrate the application 

of fibre-optic sensing to 

environmental monitoring identified 

in the literature review, 82% 

included Distributed Acoustic 

Sensing, 15% Distributed 

 
Technology 

 
Type of optical 
signal injected 

 

 
Average optical 
power (typical) 

 
Transceiver 

laser stability 

 
Other comments 

 
Optical Interferometry 

 
Coherent Wave 

 
1 mW 

 
High  

 
Requires High Loss 
Loop Back for spatial 
resolution and 
sensitivity 
 

 
State of Polarisation 

 
Coherent Wave or 
Modulated 

 
1 mW 

 
Low  

 
Could use High Loss 
Loop Back for partial 
improvement of 
spatial resolution and 
sensitivity 
 

 
Distributed Acoustic 
Sensing 

 
Pulsed 

 
mW-level (with 
reduced 
measurement 
range) 

 
Medium  

 
Limited range due to 
loss of signal strength 
or reaching a 
repeater unless a 
fibre is laid outside 
the repeater 
 

 

Table 3: Comparison of injected optical 

signal types and laser source requirements 

for four sensing techniques from Marra et 

al. (2023). 
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Temperature Sensing, 8% 

Interferometry, and 3% State of 

Polarisation. This reflects the far 

more mature development of 

Distributed Acoustic Sensing, and 

the emerging nature of 

Interferometry and State of 

Polarisation. 

MONITORING OF HUMAN 
ACTIVITIES  

There are many more papers 

than those listed in the literature 

review that cover the use of 

Distributed Acoustic Sensing and 

Distributed Temperature Sensing to 

monitor the health of the cable 

itself; however, as the focus here is 

on the marine environment, those 

papers are not included in our 

review. Some of the highlights that 

demonstrate the ability to detect 

human activities include the 

following studies that are limited to 

Distributed Acoustic Sensing:  

• Monitoring on a cable 

connecting Svalbard to mid-

Norway via Uninett’s research 

network over 44 days, detected 

and tracked ship traffic, in 

addition to whales, storms and 

earthquakes, demonstrating the 

multiple applications and 

benefits of Distributed Acoustic 

Sensing (Landrø et al., 2022).  

• Distributed Acoustic Sensing 

during the COVID-19 pandemic 

recorded changes in human 

activity that could be related to 

lockdowns and their subsequent 

easing. Similar acoustic 

monitoring studies have been 

conducted in the ocean, to 

show the so-called COVID-

quietening in the oceans 

(Lecocq et al., 2021). 

• A 41.5 km long cable offshore 

Toulon, France, was used to 

track vessels, including a tanker 

cruising above the cable with 

monitoring successfully 

demonstrated from 85 m to 2000 

m water depth. Spectral analysis 

enables identification of 

different vessels and analysis of 

the Doppler shift of the signals 

enable determination of their 

speeds (Rivet et al., 2021).    

• Distributed Acoustic Sensing has 

been used to detect vibrations 

created by the discharge of 
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wastewater into rivers, which 

may increase the ability to 

monitor water quality in 

waterways and into the ocean 

(Chen et al., 2024).  

 

EARTHQUAKES AND SEISMIC 
EVENTS  

The greatest focus of scientific 

studies (a total of 67 papers) using 

fibre sensing was on earthquakes 

and seismic events and in this case 

there have been successful 

demonstrations of Distributed 

Acoustic Sensing, Interferometry 

and State of Polarisation.  

• The arrival times of primary 

compressional (P) and 

secondary shear (S) waves 

generated by earthquakes 

Figure 3: Distributed Acoustic Sensing along Uninett’s cable between Svalbard and 

Norway that shows the location of a ship detected along the cable (A), with its signals 

shown in B & C, and (D-H) calls from two types of whale (Fin and Blue Whale). 

Reproduced from Landrø et al. (2022) under a Creative Commons License. 
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have been detected for both 

earthquakes that occur close to 

a cable and also on the other 

side of the planet, 

demonstrating the utility of fibre-

optic sensing. There is keen 

interest in using this capability to 

fill in gaps in the global seismic 

monitoring network, which is 

extremely sparse in the ocean 

and also in regions such as the 

South Pacific, despite the range 

of seismic hazards it 

experiences. 

• Distributed Acoustic Sensing has 

the benefit of effectively 

transforming the cable into an 

array of thousands of 

Figure 4: Local earthquakes detected by 

Distributed Acoustic Sensing using the 

Sanriku cable system offshore Japan. Plots 

shown are for frequency band-extracted data 

that show the energy of strain rate between 10 

and 20 Hz. The seafloor cable along which 

measurements were made is shown in blue 

and event numbers are labelled at their 

epicentres on the centre panel. Reproduced 

from Sinohara et al. (2022) under a Creative 

Commons Licence. 
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seismometers that can be used 

to not only characterise 

earthquake events, but also to 

locate their sources 

geographically (Lior et al., 2021).  

• Distributed Acoustic Sensing can 

be used to map out 

earthquake-prone faults. A four-

day DAS experiment on the 

Monterey Accelerated 

Research System cable 

identified a minor earthquake 

wavefield, which identified 

multiple previously unmapped 

submarine fault zones (Lindsey 

et al., 2019).  

Figure 5: State of Polarisation 

monitoring along a cable that connects 

between North and South America, used 

to detect a magnitude 6.0 earthquake 

that occurred in Mexico. This study made 

use of the High Loss Loop Back circuit to 

analyse signals detected between 

different repeaters (shown as circles in 

panel a). The time series along the 41st 

is shown in panel b, which clearly shows 

the onset of disturbance close in time to 

the earthquake start time as determined 

from onshore seismic monitoring. Panel 

c shows the signal power at each of the 

spans allowing the location of the 

earthquake to be pinpointed. 

Reproduced from Costa et al. (2023) 

under a Creative Commons Licence. 
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• Recent studies have shown how 

longer-reach, but coarser 

spatial resolution monitoring 

(State of Polarisation and 

Interferometry) can now be 

used to pin-point the location of 

earthquake signals along a 

cable to a resolution that is 

equivalent to the distance 

between repeaters (Marra et 

al., 2022; Zhan et al., 2021). Such 

monitoring can be performed 

over thousands of km, across 

the full length of a cable system, 

rather than DAS that is limited to 

approximately 100-150 km from 

shore.  

 

TSUNAMI AND SURFACE WAVES  

The ability to detect tsunami 

and storm surges ahead of them 

reaching a coastline provides a 

valuable opportunity to provide an 

early warning ahead to inform 

decision making and disaster 

response. Many parts of the global 

ocean are poorly monitored or are 

not monitored at all, hence there is 

considerable interest in the use of 

fibre optic sensing given the 

widespread coverage of cables 

across the global seafloor and the 

fact that they relay information in 

real-time (Wilcock, 2021). Seconds 

to minutes of additional warning 

time can make a fundamental 

difference to disaster response and 

evacuation strategies (Matias et 

al., 2021).  

• Hydrostatic pressure changes 

created by travelling surface 

waves has been detected using 

Distributed Acoustic Sensing, 

that can now be used to track 

the passage of storm surges or 

tsunami waves over distances of 

tens of kilometres (Hartog et al., 

2017).    

• A seafloor seismic and tsunami 

monitoring cable system that 

uses Interferometry has been 

installed in the coastal waters at 

the Chinese State Oceanic 

Administration’s monitoring site 

in Hainan Province, China 

(Chang et al., 2020). 

• Using a 10,000-kilometer-long 

submarine cable connecting 

Los Angeles, California, and 

Valparaiso, Chile, pressure 
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signals from ocean swells were 

recorded using State of 

Polarisation, in addition to 

multiple moderate-to-large 

earthquakes (Zhan et al., 2021).  

• Ocean swells were detected on 

a cable crossing the North 

Atlantic using Interferometry 

(resolved to repeater spans) 

and calibrated against data 

from surface metocean buoys 

(Marra et al., 2022).  

• There are plans to use various 

fibre-optic sensing techniques to 

complement the use of SMART 

repeater nodes in the planned 

Continent-Azores-Madeira 

(CAM) submarine cable to 

detect and provide early 

warning against tsunamis 

(Matias et al., 2021).  

OTHER NATURAL HAZARDS 
INCLUDING VOLCANIC 
HAZARDS  

Recent incidents such as the 

eruption of Hunga volcano offshore 

Tonga in 2022 and the 2018 

collapse of Anak Krakatau, 

Indonesia, led to fatal tsunamis and 

a host of other socioeconomic 

impacts, but were not forewarned 

against due to a lack of monitoring 

infrastructure. There is thus a 

compelling need to strengthen 

global and local monitoring 

networks and fibre-optic sensing 

has the potential to add new 

monitoring capability in areas that 

are particularly vulnerable and 

provide critical early warning.  

• The timing and location of 

volcanic earthquakes were 

characterised using Distributed 

Acoustic Sensing along a 

bespoke cable near to Azuma 

volcano, Japan (Nishimura et 

al., 2019). The source of these 

earthquakes was found to be 

shallow, beneath active 

volcanic areas. As Distributed 

Acoustic Sensing can be 

performed remotely and does 

not require maintenance of 

sensors, this observing approach 

may be highly suitable for 

monitoring other volcanoes with 

a reduced risk of system 

damage.  

• Strain signals associated with 

volcanic explosions of Mount 

Etna were detected using 
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Distributed Acoustic Sensing 

along a bespoke cable and 

their origin was located (Jousset 

et al., 2022). This approach also 

detected very small volcanic 

events, related to fluid migration 

and degassing that show 

promise for the use of DAS as an 

early warning system to detect 

precursor events before large 

reruptions.  

• Similarly, a terrestrial 3 km cable 

was used to detect spatial 

clusters of earthquakes at an 

active volcanic complex in 

British Columbia (Klaasen et al., 

2021).  Distributed Acoustic 

Sensing detected a broad 

range of unexpectedly intense, 

low-magnitude, local seismicity, 

with several tens to nearly 400 

earthquakes per day. This shows 

that DAS has the potential to 

reveal previously undiscovered 

seismicity in challenging 

environments, where 

comparably dense arrays of 

conventional seismometers are 

difficult to install.  

• A domestic subsea cable that 

was damaged by the 2022 

eruption of Hunga volcano, was 

used to monitor earthquakes 

shortly after the catastrophic 

explosion, recording low 

magnitude seismic events, 

including one located beneath 

the volcano (Nakano et al., 

2024). Given the sparse seismic 

monitoring network that exists 

offshore Tonga and in the South 

Pacific as a whole, the ability to 

use fibre-optic cables as 

earthquake and tsunami-

detection tools has potential to 

fill key monitoring gaps and 

provide the much-needed, but 

missing early warning systems.  
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Figure 5: Monitoring of volcanic explosions at Etna, Mediterranean using Distributed Acoustic Sensing 

along a fibre optic cable from Jousset et al. (2023). a) Strain rate from distributed acoustic sensing (DAS) 

records. b). Velocity seismograms from a nearby broadband seismometer. c) Pressure records from nearby 

infrasound sensors. d) Strain rate spectra. e) Ground velocity spectra. f) Pressure spectra. g) Strain rate record 

at the 710 DAS channels along the 1.3 km fibre around the explosion time. FZ: fault zone (~50 m width), at 

channels 315–340 (deep cable) and channels >700 (shallow cable). h) Strain rate-frequency distribution along 

the cable. Reproduced under a Creative Commons Licence from Jousset et al. (2022). 
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OCEANOGRAPHIC PROCESSES 
INCLUDING STORMS, 
CURRENTS AND TEMPERATURE 
FLUCTUATIONS 

Ocean conditions can pose a 

hazard to cables due to strumming, 

scour and abrasion, but also to 

coastal infrastructure and shipping. 

Furthermore, understanding and 

monitoring ocean conditions is 

critical for understanding climate 

change. Ocean conditions, such 

as waves, storms, seafloor currents 

and internal waves all generate 

ambient noise in the ocean, which 

has been shown to be detectable 

using fibre-optic sensing.  

• Ambient ocean noise was 

recorded via Distributed 

Acoustic Sensing on the 

Monterey Accelerated 

Research System cable, 

California, including 

observations of tidally-driven 

bores, storm-induced sediment 

transport, infragravity waves, 

breaking internal waves, and 

sea-state dynamics during a 

storm (Lindsey et al., 2019).  

• Oscillations of a cable offshore 

southern France were recorded 

by DAS that were linked to a 

cable in free span (Mata Flores 

et al., 2023). Internal gravity 

waves and weak oceanic 

turbulence were detected. 

Estimates were provided for 

ocean currents speed at >2 km 

water depth and validated 

against a seafloor current 

meter.  

• The use of Interferometry has 

been used to detect storms, 

seafloor currents that vary in 

intensity across tidal cycles, as 

calibrated against surface 

oceanographic buoys. These 

observations could be resolved 

to within repeater spans (Marra 

et al., 2021). 

• State of Polarisation has been 

recently used to detect signals 

thought to be indicative of 

cable strumming due to deep-

sea currents, although further 

work is needed to validate this 

hypothesis (Zhan, 2023).  

• Legacy fibre-optic 

telecommunications cables 

were used to make 

measurements of submarine 
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processes and temperature in 

Lake Geneva, where high-

resolution daily fluctuations in 

lake-bed temperature were 

recorded to a resolution of 

0.1°C (Selker et al., 2006). While 

such lacustrine and shallow 

water environments may show 

>1°C daily temperature 

variations, similar short-term 

background variability in deep-

sea temperature may be at the 

limits of detection using 

distributed optical fibre sensing 

systems (10–20 mK). However, 

longer-term (annual to 

decadal) changes in ocean 

temperature (in the order of 0.1–

0.5°C rise per decade) are well 

within the measurement 

capabilities of Distributed 

Temperature Sensing (Hartog et 

al., 2017). 

 

BIOLOGICAL ACTIVITY – 
WHALES AND DOLPHINS  

The study of biological noise, 

generated by a wide range of 

animals that use sound to 

communicate, hunt and locate 

themselves, is a growing area of 

research. Perhaps the best-known 

organisms to use noise are 

cetaceans (whales and dolphins). 

A number of recent studies have 

shown that Distributed Acoustic 

Sensing along fibre-optic cables 

can be used to monitor cetacean 

activity. 

 

• Two 260 km telecommunication 

cables were used to record low-

frequency whale vocalizations 

offshore Svalbard, Norway 

(Landrø et al., 2022; 

Rørstadbotnen et al., 2023). This 

study pin-pointed the location 

of fin whales (to within 100 m) 

and recorded their songs, 

speed and heading to a 

distance of 95 km from the 

landing station.  

• Baleen whales were detected 

along a 120 km cable with 

measurements made at a 

spatial resolution of 4 m 

(Bouffaut et al., 2022). This novel 

study not only identified the 

whale species, but also 

estimated their location, and 

used the noise generated by 
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the whales as a seismic source 

to image the sub-seafloor.  

• Distributed Acoustic Sensing 

along two cables of the Ocean 

Observatories Initiative Regional 

Cabled Array (offshore Oregon) 

enabled detection of fin whale 

and Pacific blue whale calls, 

enabling differentiation of 

species and sex of the animals 

(Abadi et al., 2022; Wilcock et 

al., 2023).   

 

POLAR AND GLACIAL 
PROCESSES 

Monitoring polar regions is a 

critical component of 

understanding climate change 

and potential feedbacks that may 

exist. Such regions are remote and 

have limited monitoring in marine 

settings; hence, the ability to use 

subsea cables is of keen interest to 

researchers that study climate-ice-

ocean interactions.  

• During eight, one-week, 

seasonally-distributed periods 

across two years Distributed 

Acoustic Sensing was used to 

monitor the seasonal growth 

and thawing of sea ice on a 40 

km long section of cable on the 

continental shelf of the Beaufort 

Sea, Alaska (Baker et al., 2021).  

• Monitoring was performed using 

Distributed Acoustic Sensing 

along an array of bespoke 

cables to image changes in 

permafrost under a controlled 

melting experiment (Cheng et 

al., 2022).  

INTRODUCTION TO FIBRE-OPTIC SENSING TECHNOLOGIES 



 

28  A PUBLICATION FROM THE INTERNATIONAL CABLE PROTECTION COMMITTEE (ICPC) 

SUBMARINE CABLE PROTECTION AND THE ENVIRONMENT   ●   APRIL 2024 

• Distributed Acoustic Sensing can 

also be deployed on cables 

that are installed vertically within 

a borehole (Booth et al., 2020). 

A bespoke cable was installed 

in a >1000 m deep borehole 

drilled in to the Store Glacier (a 

fast-flowing outlet of the 

Greenland Ice Sheet), and used 

to image the structure of the 

ice.  

• Cables were temporarily 

installed vertically within 

boreholes drilled through the 

ice-shelf cavity on the Ross Ice 

Shelf, Antarctica (Tyler et al., 

2013).  Distributed Temperature 

Sensing (DTS) in fibre-optic 

cables was used to provide 

near-continuous observations of 

ice and ocean temperatures to 

a depth of almost 800 m 

beneath the ice-shelf surface. 

Data received document the 

presence of near-freezing water 

throughout the cavity from 

November through January, 

followed by an influx of warmer 

water reaching ∼150 m 

beneath the ice-shelf base 

during February and March.  

• Dynamic strain measurements 

along a 1 km terrestrial fibre-

optic cable on an Alpine glacier 

made using Distributed Acoustic 

Sensing were used to produce 

high-quality seismograms 

related to glacier flow and 

nearby rock falls (Walter et al., 

2020). The data enabled novel 

characterisation of the glacier 

movement. 

• Snow avalanches were 

detected and characterised 

using bespoke fibre-optic cables 

at an onshore site in Switzerland 

(Paltz et al., 2023). These data 

showed that the signal of the 

snow avalanche was recorded 

long before it reached the 

cable, demonstrating that this 

approach may be used for early 

warning. Such flows are similar 

to turbidity currents in the 

ocean, so this shows promise for 

similar application in submarine 

settings.  
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WHAT DOES THE FUTURE HAVE 
IN STORE?  

The steps forward in fibre-optic 

sensing technology, enabled by 

similar advances in analysis of large 

broadband datasets such as 

through use of Machine Learning, 

are seeing a revolution in ocean 

and earth monitoring. The rapid 

growth in studies that use this 

technology will continue to grow 

and the benefits for science and 

society are significant, but currently 

not fully realised. The scientific 

opportunities provided by fibre-

optic sensing are seemingly 

endless; however, it is not yet 

possible to upscale this technology 

to create a global monitoring 

network. This is in part due to a 

number of outstanding challenges, 

several of which are the focus of a 

new working group on Cable 

Sensing established by the ICPC.  

The data volumes that are 

generated by fibre-optic sensing, 

particularly Distributed Acoustic 

Sensing, are vast. Most studies have 

typically focused on short duration 

monitoring windows, that span no 

more than a few days or weeks, 

simply because of storage 

requirements. Many studies that 

have detected new processes or 

require careful consideration of 

precisely what is being detected. 

This emphasises a need for 

calibration of fibre optic-sensing 

data against measurements made 

by conventional sensors so that the 

data outputs can be converted 

into meaningful outputs. All of this is 

required such that data can be 

analysed robustly, but if early 

warning systems are to be 

developed, then new algorithms 

will be required such that the data 

stream can be interpreted in real 

time, with sufficient confidence 

that false alarms are not raised. 

Some challenges may relate to 

apparent security concerns, which 

may arise where cables connect 

between two different countries 

and cross their jurisdictional waters.    

Under the United Nations 

Convention on the Law of the Sea 

(UNCLOS), all states have the 

freedom to lay submarine cables 

within the Exclusive Economic Zone 

of all Coastal States and in the High 

Seas beyond the continental shelf 
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because of their important role in 

enabling global communications. 

UNCLOS places greater constraint 

on activities that involve Marine 

Scientific Research, which require 

special permits. If any cable-based 

monitoring was deemed to be 

focused on marine scientific 

research, then this could lead to 

jurisdictional creep with the 

requirement for additional permits, 

which could lengthen the 

timescales for any repairs required 

for cables or the installation of 

critical new infrastructure. It is 

therefore important to note that the 

fibre-optic sensing techniques 

summarised in this publication use 

unmodified telecommunications 

cables, hence the primary use of 

the cable remains the same (data 

and communications transfer). 

Fibre-optic sensing is first and 

foremost a cable monitoring tool, to 

understand the health of the 

system, identify any potential faults 

to aid repair, and support cable 

protection. The ICPC is actively 

supporting research into the 

benefits of technologies to improve 

cable protection. That this 

technology also has a scientific 

value is a mutually beneficial 

coincidence, and one that will 

hopefully continue to lead to a 

greater understanding of our global 

ocean and the planet as a whole.  
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The International Cable Protection Committee (ICPC) was formed in 1958 and its primary goal is to promote 

the safeguarding of international submarine cables against human made and natural hazards. The 

organisation provides a forum for the exchange of technical, legal and environmental information about 

submarine cables and, with more than 215 MEMBERS from over 70 NATIONS, including cable operators, 

owners, manufacturers, industry service providers, and governments, it is the world’s premier submarine cable 

organisation. The ICPC comprises of an 18 Member Executive Committee (EC)-led organisation voted in by its 

Full Members. In addition to the Marine Environmental Adviser (MEA), General Manager (GM) and Secretariat 

team, the ICPC also has an appointed International Cable Law Adviser (ICLA) as well as a United Nations 

Observer Representative (UNOR). 

Prime Activities of the ICPC: 

• Promote awareness of submarine cables as critical infrastructure to governments and other users 

of the seabed. 

• Establish internationally agreed recommendations for cable installation, protection, and 

maintenance. 

• Monitor the evolution of international treaties and national legislation and help to ensure that 

submarine cable interests are fully protected. 

• Liaison with UN Bodies. 

Recommendations: 

• Taking into account the marine environment, the ICPC authors Recommendations which 

provides guidance to all seabed users ensuring best practices are in place. 

• Educating the undersea community as well as defining the minimum recommendations for cable 

route planning, installation, operation, maintenance and protection as well as survey operations. 

• Facilitating access to new cable technologies. 

Advancing Regulatory Guidance: 

• Promoting United Nations Convention for the Law of the Sea (UNCLOS) compliance. 

• Championing uniform and practical local legislation and permitting 

• Protecting cable systems and ships. 

• Aiding education of government regulators and diplomats. 

Working with Science: 

• Supporting independent research into cables. 

• Publishing reviews for governments and policy makers. 

• Working with environmental organisations. 

• Effective public education via various media. 

Sharing seabed and oceans in harmony 

 

Please visit w.iscpc.org for further information. 

To learn how to become 

of Member organisation 

of the ICPC, please  

click on join here. 

http://www.iscpc.org/
https://iscpc.org/publications/recommendations/
http://www.iscpc.org/
https://iscpc.org/join-the-icpc/
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Alahbab et al.  2005   1    1             1  

Baba et al.  2024  1          1        
 1 

Baker and Abbott 2021 
 1              1    

  

Baker and Abbott 2022 
 1              1    

  

Becerril et al. 2024 
 1         1         

  

Bellefleur et al.  2020  1             1     
  

Biagioli et al.  2024  1          1 1       
 1 

Bogris et al.  2022    1        1        
  

Booth et al.  2020 
 1              1    

  

Bouffaut et al.  2022 
 1    1              

  

Bowden et al.  2022 
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Buisman et al.  2022  1             1     
  

Cantono et al.  2022 1 1  1 1               
  

Cao et al.  2023  1                1 1 1 1 

Chang et al.  2020 
   1        1        

  

Chen et al.  2023 
 1          1        

  

Chen et al.  2024 
 1                 1 

  

Chen et al.  2023  1             1     
  

Cheng et al.  2021  1             1     
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Cheng et al.  2022  1             1 1    
  

Correa et al.  2019  1             1  1   
 1 

Costa et al.  2023     1       1        
  

Costa et al.  2023 
   1                

  

Daley et al.  2013 
 1             1  1   

  

Dale et al.  2016 
 1             1     

 1 

Dall'Osto 2023  1           1       
  

Dou et al.  2017  1                 1 
  

Douglass et al.  2023  1                  
 1 

Escobar-Vera et al.  2023 1 1                  
  

Failleau et al.  2018 
  1    1             

1  

Fang et al.  2020 
 1          1       1 

  

Farghal et al.  2022  1         1 1        
  

Fernández-Ruiz et al.  2022 1 1       1 1 1 1    1    
  

Fernández-Ruiz et all.  2020  1    1              
  

Fernández-Ruiz et al.  2020 
 1          1   1     

  

Fukushima et al.  2022 
 1          1   1     

  

Glover et al.  2023 
 1         1         

  

González-Herráez et al.  2024  1       1 1 1         
  

Gorshkov et al.  2022 1        1      1    1 1  
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Gutscher et al.  2023    1        1        
  

Guo et al.  2023  1 1                 
  

Hara et al.  1999   1    1             1  

Hartog 1995 
  1    1             

1  

Hartog 2002 
  1    1             

1  

Hartog et al.  2018 1 1 1 1   1  1 1 1 1 1     1 1 
  

He et al.  2022   1    1          1   1  

Hernández et al. 2021  1          1        
  

Jousset 2019 1 1       1   1        
  

Jousset et al.  2022 
 1           1       

  

Jousset et al.  2018 
 1          1        

 1 

Kennett  2022 
 1          1        

  

Klaasen et al.  2021  1          1 1       
  

Kumari et al.  2019 1  1    1             
  

Landrø et al.  2022  1    1   1   1      1  
  

Lauber et al.  2018 
  1    1             

1  

Lecocq et al.  2020 
 1                 1 

  

Lentas et al. 2020 
 1          1        

 1 

Lellouch et al.  2019  1             1  1   
  

Lellouch et al.  2023  1          1   1     
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Li et al.  2023 1 1                  
  

Li et al.  2023  1          1        
  

Li et al.  2021  1          1        
 1 

Li et al.  2021 
 1          1        

  

Lin et al. 2024 
 1       1 1 1         

  

Lina et al.  2023 1 1             1     
  

Lindsey and Martin 2021  1       1 1 1 1 1 1 1 1  1 1 1  

Lindsey et al.  2019  1       1  1 1   1     
  

Lindsey et al.  2017  1          1        
  

Lindsey et al.  2020 
 1                  

  

Lior et al. 2023 
 1         1 1        

  

Lior et al. 2021 
 1         1 1        

  

Lior et al. 2021  1          1        
 1 

Luo et al.  2020  1          1   1     
  

Marra et al.  2018    1        1        
  

Marra et al.  2022 
   1     1 1 1 1        

  

Mata Flores et al.  2023 
 1        1          

1 1 

Mata Flores et al.  2023 
 1       1 1  1        

1  

Maateeva et al..  2014  1               1   
  

Matias et al.  2021  1  1       1 1        
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Matsumoto et al.  2021  1       1   1        
 1 

Min et al.  2021 1 1  1   1  1  1 1        1  

Mjehovich et al.  2023  1          1        
  

Mo et al.  2023 
 1          1        

 1 

Mondanos et al.  2015 
 1 1    1          1   

1  

Nakano et al.  2024 
 1          1        

  

Nayak et al.  2021  1          1        
  

Nishimura et al.  2021  1          1 1       
  

Owen et al.  2012  1                  1  

Paitz et al.  2021 
 1                  

 1 

Paitz et al.  2023 
 1            1  1    

  

Parker et al.  2014 
 1             1     

1  

Pelaez Quiñones et al.  2023  1     1             
 1 

Peña Castro et al.  2023  1              1    
  

Pevzner et al.  2020  1               1   
  

Rivet, D., Ampuero et al.  2022 
 1                  

  

Rivet et al.  2021 
 1                1  

  

Rodríguez Tribaldos. and 
Ajo‐Franklin 

2021 
 1               1   

  

Rørstadbotnen et al.  2023  1    1              
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Rørstadbotnen et al.  2023  1            1      
  

Rosst et al.  2022  1             1     
  

Rui et al.  2019   1    1   1          
  

Seabrook et al.  2022 
  1    1          1   

1  

Selker et al. 2006 
  1    1         1    

  

Shen and Wu 2024 
 1     1     1        

  

Shinohara et al.  2022  1          1   1     
  

Silva et al.  2022   1    1             1  

Sladen et al.  2019  1          1        
  

Smith et al.  2023 
 1              1    

 1 

Sørensen et al. 2018 
 1 1    1  1 1          

x  

Spica et al.  2023 
 1          1   1     

  

Spica et al.  2022  1             1     
  

Spica et al.  2020  1       1 1 1 1 1      1 1  

Spikes et al.  2019  1             1     
 1 

Taweesintananon et al.  2021 
 1             1     

 1 

Taweesintananon et al.  2022 
 1       1   1        

  

Taweesintananon et al.  2023 
 1       1      1     

  

Tonegawa et al.  2022  1          1        
  

Trabattoni et al.  2022  1          1        
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q
u

if
e

r 

c
h

a
ra

c
te

ri
s

a
ti

o
n

  
 V

e
s

s
e

ls
 i

n
c
l 

a
n

c
h

o
ri

n
g

 

H
u

m
a

n
 a

c
ti

v
it

ie
s
 

A
s
s

e
t 

in
te

g
ri

ty
/ 
c

a
b

le
 

s
e

c
u

ri
ty

  

C
o

m
p

a
ri

s
o

n
 w

it
h

 

c
o

n
v

e
n

ti
o

n
a

l 
s

e
n

s
o

rs
 

Trafford et al.  2024  1             1     
 1 

Tyler et al.  2013   1    1         1    
  

Ukil et al.  2011   1    1             1  

Van De Giesen et al.  2012 
  1    1             

1  

van den Ende et al.  2021 
 1                  

  

van den Ende and 
Ampuero 

2021 
 1          1        

  

Viens et al.  2022 
 1          1   1     

  

Viens et al.  2023 
 1             1     

  

Waagaard et al.  2022 
 1      1    1      1  

  

Walter et al.  2020  1            1  1    
  

Wang et al.  2018  1          1        
 1 

Wilcock 2021 1    1       1        
  

Wilcock et al.  2023 
 1    1            1  

  

Williams et al.  2019 
 1          1        

  

Williams et al.  2023 
 1 1 1       1         

  

Williams et al.  2022  1 1    1  1 1 1         
  

Wu et al.  2017  1          1   1     
  

Xie et al.  2024  1          1    1    
  

Xie et al.  2022 
 1            1      
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Authors Year 

 Technique Variables recorded  

R
e
v

ie
w

 p
a

p
e

r 

D
is

tr
ib

u
te

d
 A

c
o

u
s

ti
c

 

S
e

n
s

in
g

 

D
is

tr
ib

u
te

d
 T

e
m

p
e

ra
tu

re
 

S
e

n
s

in
g

  

In
te

rf
e
ro

m
e

tr
y
 

S
ta

te
 o

f 
P

o
la

ri
z
a

ti
o

n
  

C
e
ta

c
e

a
n

s
 

T
e

m
p

e
ra

tu
re

 

F
is

h
in

g
 

S
to

rm
s

 a
n

d
 w

e
a

th
e

r 

C
u

rr
e

n
ts

 

W
a

v
e

s
/ 

ts
u

n
a

m
i 

 

E
a

rt
h

q
u

a
k

e
s

 a
n

d
 s

e
is

m
ic

 

e
v

e
n

ts
 

V
o

lc
a

n
ic

 h
a
z
a

rd
s

 

R
o

c
k

 f
a

ll
s

/a
v
a

la
n

c
h

e
s
/ 

s
lo

p
e

 f
a

il
u

re
s

 

S
u

b
s

u
rf

a
c

e
 

c
h

a
ra

c
te

ri
s

a
ti

o
n

  

P
o

la
r 

a
n

d
 g

la
c

ia
l 

p
ro

c
e

s
s
e

s
 

R
e
s

e
rv

o
ir

 a
n

d
 a

q
u

if
e

r 

c
h

a
ra

c
te

ri
s

a
ti

o
n

  
 V

e
s

s
e

ls
 i

n
c
l 

a
n

c
h

o
ri

n
g

 

H
u

m
a

n
 a

c
ti

v
it

ie
s
 

A
s
s

e
t 

in
te

g
ri

ty
/ 
c

a
b

le
 

s
e

c
u

ri
ty

  

C
o

m
p

a
ri

s
o

n
 w

it
h

 

c
o

n
v

e
n

ti
o

n
a

l 
s

e
n

s
o

rs
 

Xiao et al.  2023  1          1        
  

Xiao et al.  2023  1                 1 
  

Xiao et al.  2023  1         1         
  

Yang et al.  2022 
 1          1   1     

  

Yetik et al.  2021 
 1                  

  

Yin et al.  2023 
 1          1        

  

Zhan  2020 1 1          1   1     1  

Zhan et al.  2021     1    1  1 1        
  

Zhang et al.  2006     1      1         
  

Zhu et al.  2022 
 1                  

1 1 

Zhu and Stensrud 2019 
 1       1           

  

Zhu et al.  2023 
 1          1        

  

Zumberge et al.  2018    1        1        
  

Table 3: Summary of literature review of studies that use fibre-optic sensing to monitor the environment. Full reference list provided 

at the end of the main article. 
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